05另一专利,解决鬼探头视野盲区
另一个百度的专利,公开号CN113753081A,公开日2021年12月07日,该专利涉及自动控制领域,涉及一种激光雷达路侧盲区交通参与者避让方法和装置。
这个专利专门解决激光雷达无法识别障碍物遮挡造成的盲区问题,即预防汽车行驶路线鬼探头问题!
这问题是行业最棘手的!
在无人驾驶车辆中,集成了多类传感器:GPS-IMU(惯性测量单元,InertialMeasurement Unit)组合导航模块、相机、激光雷达、毫米波雷达等传感器。
无人驾驶车辆行驶过程中,主要依靠激光雷达对障碍物进行检测,但是,现有无人驾驶车辆的障碍物检测,只能检测到出现在激光雷达视野中的障碍物,无法检测由于障碍物遮挡造成的盲区中的情况。
换句话说,激光雷达的眼睛只能看到前方障碍物,看不到障碍物身后的东西。
比如“鬼探头”,即行人、自行车、车辆、动物等交通参与者突然从其他大障碍物(公交车)遮挡造成的盲区中出现,而无人驾驶车辆只能在识别到交通参与者后才能进行反应,如刹车灯;由于突然出现的交通参与者留给无人驾驶车辆的反应时间有限,即使刹车也可能会发生碰撞,这就增加了突发危险和事故发生的几率。
这个专利构思的技术方案实用性比较大,有不错的参考价值。
06步骤一 准备好软硬件设备
1)行车电脑或车载终端可以控制激光雷达传感器以某一频率采集某一区域的点云数据。无线连接方式可以包括但不限于3G/4G连接、WiFi连接、蓝牙连接、WiMAX连接、Zigbee连接、UWB(ultra wideband)连接、以及其他现在已知或将来开发的无线连接方式。
2)激光雷达的规格可以采用16线、32线或者64线等等。其中线数越高表示激光雷达的单位能量密度越大。
3)本实施例中,装在当前车辆上的激光雷达在每一秒中旋转360次,扫描当前车辆周围一圈的待识别的障碍物的信息,为一帧待识别的障碍物的信息。本实施例中的待识别的障碍物的信息可以包括待识别的障碍物的点云以及待识别的障碍物的反射值。当前车辆周围的待识别的障碍物可以有一个,也可以有多个。激光雷达扫描之后,可以以当前车辆的质心位置为坐标系的原点,并取平行于水平面的两个方向分别为x方向和y方向,作为长度方向和宽度方向,垂直于地面的方向为z方向,作为高度方向。然后可以根据待识别障碍物的点云中的每一个点与原点的相对位置和距离,在坐标系中标识待识别的障碍物。
4)获取无人驾驶车辆周围的待识别障碍物的信息后,利用预设的点云识别模型对所述待识别障碍物进行识别。所述预设的点云识别模型可以是各种预先训练的能够识别点云数据中障碍物的算法,例如可以是ICP算法(Iterative Closest Point,就近点搜索法)、随机森林算法等。在利用上述点云识别模型识别点云数据中的障碍物后,对识别出的障碍物进行标注,得到标注结果。在对识别出的障碍物进行标注时,标注出的形状可以为与各障碍物外切的最小长方体,也可以是与各障碍物的外表面贴近的不规则曲面。可以理解的是,上述标注结果中包括对各障碍物的识别结果,例如点云数据中包括车辆、交通参与者以及树木,则标注结果中也包括表示不同障碍物的标号或文字,如1代表公交车、2代表小汽车、3代表交通参与者等。
07步骤二:测算路侧盲区
这步比较关键,因为针对的就是盲区鬼探头,突然从前方公交车身后出来一部摩托车抢道闯红绿灯横穿路口,这样导致车毁人亡的事不要太多。
哪怕是个老司机都未必反应的过来。
如何测算路测盲区?
在百度工程师的定义中,路侧盲区一般是由停靠在路侧或行车在无人驾驶车辆的外侧车道的大型车辆,例如公交车、卡车造成的。由于其体积较大,会遮挡激光雷达的扫描,使无人驾驶车辆无法获知其外侧是否存在交通参与者。交通参与者突然从路侧盲区进入无人驾驶车辆所在道路,即使无人驾驶车辆进行刹车,由于刹车距离的限制,很可能仍会与所述交通参与者发生碰撞。
判断当前道路场景是否为潜在碰撞场景,判断标准包括:存在路侧盲区、所述路侧盲区为大型车辆造成、所述大型车辆单独位于道路外侧车道。
优选地,对路侧盲区,一般仅考虑由大型车辆造成的路侧盲区。预设的点云识别模型可以识别对应的障碍物类型和尺寸,以判断所述障碍物是否为大型车辆。
优选地,通过无人驾驶车辆的摄像头等传感器,识别道路车道线,确定所述大型车辆是否位于道路外侧车道。如果判断为停靠与道路外侧车道的大型车辆,则其为到站上下乘客的公交车的概率较大,对于这种情况,很有可能有交通参与者从公交车车头突然进入无人驾驶车辆所在车道(与无人驾驶车辆同向行驶的公交车),或从公交车车尾突然进行无人驾驶车辆所在车道(与无人驾驶车辆相向形式的公交车)。
优选地,若所述大型车辆单独位于道路外侧车道,则认为所述大型车辆前方的路侧盲区中出现交通参与者从车头突然进入无人驾驶车辆所在车道(与无人驾驶车辆同向行驶的公交车),或从公交车车尾突然进行无人驾驶车辆所在车道(与无人驾驶车辆相向形式的公交车)的概率较大。