基础技术布局完成后 BAT都在参与的无人驾驶时代还有多远?

凌晨六点
关注

近期,国内企业在无人驾驶领域的探索和实践越来越多。继百度宣布红旗自动驾驶车型量产计划之后,广州街头出现自动驾驶出租车,德邦无人驾驶货车完成首单大件快递配送。一时之间,多家企业不约而同向无人驾驶技术发起了新一轮冲击。

自动驾驶或者说无人驾驶的技术看似还很遥远,但在不断的实践过程中,已经有了较大程度的发展。在逐渐落地使用的过程中,领域内的主要玩家已经完成了在基础技术领域的布局,那么哪些技术和应用才是它们比拼的焦点?国内整个自动驾驶行业已经走到了落地的哪一步?在将来,自动驾驶将会怎样改变相关领域的商业形态?

无人驾驶都需要基础技术支持 BAT基本完成布局

无人驾驶涉及到的技术多且复杂,这里主要讨论比较热门和重要的一些方面。当然最首要的是汽车本身,入局自动驾驶要么必须会造车,要么就需要和车企达成合作。专业的人做专业的事,对于BAT这几家互联网企业来说,与车企合作是常见方案。

除了汽车本身,还有几项关键的技术是对自动驾驶能力产生巨大影响的,BAT在这些领域都不甘落后。

第一个是对外界环境的信息收集和基本感知,其中高精地图是自动驾驶技术所需的重要信息来源。传统地图只是作为驾驶员的信息参考,高精地图则要被用于AI直接做出驾驶决策。因此这一块也是自动驾驶企业发力较早的部分,百度地图(长地万方)、高德地图和腾讯投资的四维图新都是BAT在高精地图领域的布局。

除高精地图外,各类传感器也是单车智能的必备要素。在车路协同还不发达的时期,自动驾驶对摄像头、激光雷达等传感器的依赖程度更高,而这些技术也有很高要求,并且造价十分高昂。目前国内在激光雷达方面有所成就的有速腾聚创和禾赛科技,正好也已经分别投入阿里和百度麾下。

第二个是计算机视觉或图像识别,也就是把采集到的信息进行分析处理,这是一个比较复杂的过程。尤其是对于千变万化的路况来说,要做到足够准确是有一定难度的。目前百度大脑和腾讯优图实验室都在攻坚视觉识别技术,阿里系的商汤科技也开始在探索其原本较成熟的识别技术在自动驾驶领域的应用。

第三个是车与外界的信息交互,也就是V2X,它能与智能道路和云计算等技术结合,是车路协同方案的重要组成部分。通过把更多收集信息的义务交给道路,汽车通过V2X技术与智能道路和其他交通参与者在车联网中共享信息,相对来说更能保证信息的准确性和高效性。目前,百度和阿里的两套方案最受关注。

第四个是车载OS和AI芯片,这是其他技术应用实现的必经途径。BAT都有各自的车载系统,并且也承载着自己的生态目标。OS的差异也开始出现封闭倾向,不同的生态割裂开来,这对于未来车联网中信息的沟通会存在一定的不便,智慧交通必然要求打通数据,那时市场份额更高的OS或许会掌握更多话语权。

至于AI芯片,未来肯定是不可缺少的一部分,除了BAT已经发布或正在研发的之外,还有众多企业入局这片市场,其中不乏华为等硬件厂商。但是否已经能够满足自动驾驶的需求,最终还是要看落地效果。

声明: 本文由入驻OFweek维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。
侵权投诉

下载OFweek,一手掌握高科技全行业资讯

还不是OFweek会员,马上注册
打开app,查看更多精彩资讯 >
  • 长按识别二维码
  • 进入OFweek阅读全文
长按图片进行保存