过去5年间,计算能力的大幅进步触发了AI革命,谷歌母公司Alphabet、亚马逊、苹果、Facebook以及微软等科技巨头争先进入这个领域。尤其是自去年人工智能机器人大与人类棋手开展,人工智能关注度达到了一个新的高峰。其实,人工智能的发展可以追述到60几年前,但是因为技术的原因数次沉寂,直到深度学习的出现,让人工智能再次掀起热潮。
什么是深度学习?
深度学习是机器学习方法之一,而机器学习则是让计算机从有关我们周围世界或其中某个特定方面的范例中学习,从而让计算机变得更加智能的一种方式。在所有的机器学习方法中,深度学习是最独特的,因为它的灵感源自我们对人脑探索与研究。深度学习试图让计算机学会很多不同层次的抽象和表达,这可能是使此类系统如此成功的原因。
为何安防行业成深度学习重点?
安防领域是个时刻都能产生海量数据的行业,近两年在AI技术的加持之下,这些数据正在产生新的意义,为安防这个传统行业解决更多问题。
安防行业作为人工智能技术天然的训练场和应用场,对于人工智能的落地应用有着迫切的需求,基于安防行业的天然属性,安防行业在人工智能化市场有着深入的投入。出于对市场的敏感,主流的设备解决方案供应商已经发力布局已经纷纷入局,凭借其各自深耕安防行业的经验,都在应用落地取得了不俗的成绩。其中,深度学习方面取得的成绩尤为突出,成为点燃人工智能发展的关键技术。
深度学习主要的研究领域在语音识别和视觉方面,而且将深度学习应用到各个方向,可以不同的领域做出不同的技术创新。对于掌握了许多视频图像资源的安防行业来说,深度学习和安防的结合拥有比较高的契合度,即对图像和视频的分析,包括:
——在图像分析方面,比如人们熟悉的人脸识别、文字识别和大规模图像分类等,深度学习大幅提升了复杂任务分类的准确率,使得图像识别、语音识别,以及语义理解准确率大幅提升。
——在人脸方面,可以实现人脸检测、人脸关键点定位、身份证对比、聚类以及人脸属性、活体检测等等。在智能监控方面,可以做人、机动车、非机动车视频结构化研究。
——在文字方面,小票的识别、信用卡的识别、车牌的识别,这些都是由深度学习的算法来做的。同时在图像的处理方面,在去雾、超分辨率、去抖动、去模糊,HDR、各种智能滤镜的设计都是用深度学习的算法。