论文中还分析了武汉、北京等5个城市的数据。华米的大数据显示,武汉市的预测感染率在1月28日左右达到峰值,而武汉市官方报告的确诊感染率在2月8日达到最大值(这是由于当天对新冠肺炎的诊断标准做出了调整,导致当天突然急剧增加13436例新确诊病例)。华米的大数据预测的发病高峰比官方公布的高峰提前11天。研究者认为,疾病刚开始出现到病毒核酸检测诊断出结果必然存在一定的滞后。如果由症状的出现来确定,华米的预测非常符合此前科学的预计。
(华米预测意大利疫情数据曲线)
(华米预测西班牙疫情数据曲线)
同样,如上图所示,对于意大利和西班牙的新冠确诊峰值的预测,华米的预测分别是3月13日和3月18日,比官方公布的数据提前了至少一周。
基于华米可穿戴医疗大数据预测的缺陷
当然,华米的研究者也在论文中指出了自己所设计的系统存在的不足。最大的影响来自节假日,如春节、圣诞节等,交通和人口转移、社交活动,尤其是饮酒对被检测者的生理体征数据带来的影响。比如在饮酒就会让用户的RHR突然变高。虽然这种偶然性行为对整体大数据的影响会被大量的样本数据稀释,尤其是华米的系统是要求检测数据连续5天呈现异常才被判定和疫情有关。但如果是遇上了长达一个星期假期的春节,连续5天以上饮酒的人数就会大大增加,就有可能造成数据的失真。所以,设计这个系统还需要对节假日的影响进行消除。