你知道【字符设备驱动程序】的两种写法吗?

道哥分享
关注

作  者:道哥,10+年嵌入式开发老兵,专注于:C/C++、嵌入式、Linux。

image.png

别人的经验,我们的阶梯!

大家好,我是道哥,今天我为大伙儿解说的技术知识点是:【字符设备的驱动程序】。

在上一篇文章中,讨论的是Linux系统中,驱动模块的两种编译方式。

我们就继续以此为基础,用保姆级的粒度一步一步操作,来讨论一下字符设备驱动程序的编写方法。

1. 这篇文章的实际操作部分,使用的是的 API 函数;

2. 下一篇文章,再来演示新的 API 函数;

混乱的 API 函数

我在刚开始接触Linux驱动的时候,非常的困扰:注册一个字符设备,怎么有这么多的 API 函数啊?

参考的每一篇文章中,使用的函数都不一样,但是执行结果都是符合预期的!

比如下面这几个:

register_chrdev(...);

register_chrdev_regin(...);

cdev_add(...);

它们的功能都是向系统注册字符设备,但是只从函数名上看,初学者谁能分得清它们的区别?!

这也难怪,Linux系统经过这么多年的发展,代码更新是很正常的事情。

但是,我们参考的文章就没法做到:很详细的把文章中所描述内容的背景介绍清楚,往往都是文章作者在自己的实际工作环境中,测试某种方法解决了自己的问题,于是就记录成文。

不同的文章、不同的工作上下文、不同的API函数调用,这往往就苦了我们初学者,特别是我这种有选择障碍症的人!

其实,上面这个几个函数都是正确的,它们的功能都是类似的,它们是 Linux 系统中不同阶段的产物。

旧的 API 函数

在Linux内核代码2.4版本和早期的2.6版本中,注册、卸载字符设备驱动程序的经典方式是:

注册设备:

int register_chrdev(unsigned int major,const char *name,struct file_operations *fops);

参数1 major:如果为0 - 由操作系统动态分配一个主设备号给这个设备;如果非0 - 驱动程序向系统申请,使用这个主设备号;

参数2 name:设备名称;

参数3 fops:file_operations 类型的指针变量,用于操作设备;

如果是动态分配,那么这个函数的返回值就是:操作系统动态分配给这个设备的主设备号。

这个动态分配的设备号,我们要把它记住,因为在其他的API函数中需要使用它。

卸载设备:

int unregister_chrdev(unsigned int major,const char *name)

参数1 major:设备的主设备号,也就是 register_chrdev() 函数的返回值(动态),或者驱动程序指定的设备号(静态方式);

参数2 name:设备名称;

新的 API 函数

注册设备:

int register_chrdev_region(dev_t from, unsigned count, const char *name);
int alloc_chrdev_region(dev_t *dev, unsigned baseminor, unsigned count,const char *name);

上面这2个注册设备的函数,其实对应着旧的 API 函数 register_chrdev:把参数 1 表示的动态分配、静态分配,拆分成2个函数而已。

也就是说:

register_chrdev_region(): 静态注册设备;

alloc_chrdev_region(): 动态注册设备;

这两个函数的参数含义是:

register_chrdev_region 参数:

参数1 from: 注册指定的设备号,这是静态指定的,例如:MKDEV(200, 0) 表示起始主设备号 200, 起始次设备号为 0;

参数2 count: 驱动程序指定连续注册的次设备号的个数,例如:起始次设备号是 0,count 为 10,表示驱动程序将会使用 0 ~ 9 这 10 个次设备号;

参数3 name:设备名称;

alloc_chrdev_region 参数:

参数1 dev: 动态注册就是系统来分配设备号,那么驱动程序就要提供一个指针变量来接收系统分配的结果(设备号);

参数2 baseminor: 驱动程序指定此设备号的起始值;

参数3 count: 驱动程序指定连续注册的次设备号的个数,例如:起始次设备号是 0,count 为 10,表示驱动程序将会使用 0 ~ 9 这 10 个次设备号;

参数4 name:设备名称;

补充一下关于设备号的内容:

这里的结构体 dev_t,用来保存设备号,包括主设备号和次设备号。

它本质上是一个 32 位的数,其中的 12 位用来表示主设备号,而其余 20 位用来表示次设备号。

系统中定义了3宏,来实现dev_t变量、主设备号、次设备号之间的转换:

MAJOR(dev_t dev): 从  dev_t 类型中获取主设备号;

MINOR(dev_t dev):  从 dev_t 类型中获取次设备号;

MKDEV(int major,int minor): 把主设备号和次设备号转换为 dev_t 类型;

卸载设备:

void unregister_chrdev_region(dev_t from, unsigned count);

参数1 from: 注销的设备号;

参数2 count: 注销的连续次设备号的个数;

代码实操

下面,我们就用旧的API函数,一步一步的描述字符设备驱动程序的:编写、加载和卸载过程。

如何使用新的API函数来编写字符设备驱动程序,下一篇文章再详细讨论。

以下所有操作的工作目录,都是与上一篇文章相同的,即:~/tmp/linux-4.15/drivers/。

创建驱动目录和驱动程序

image.png

 

image.png

创建 Makefile 文件

$ touch Makefile

内容如下:

image.png

编译驱动模块

$ make

得到驱动程序: driver1.ko 。

加载驱动模块

在加载驱动模块之前,先来看一下系统中,几个与驱动设备相关的地方。

先看一下 /dev 目录下,目前还没有我们的设备节点( /dev/driver1 )。

再来查看一下 /proc/devices 目录下,也没有 driver1 设备的设备号。

cat /proc/devices  | grep driver1

/proc/devices 文件: 列出字符和块设备的主设备号,以及分配到这些设备号的设备名称。

执行如下指令,加载驱动各模块:

$ sudo insmod driver1.ko

通过上一篇文章我们知道,当驱动程序被加载的时候,通过 module_init(driver1_init); 注册的函数 driver1_init() 将会被执行,那么其中的打印信息就会输出。

还是通过 dmesg 指令来查看驱动模块的打印信息:

$ dmesg

如果输入信息太多,可以使用dmesg | tail指令;

此时,驱动模块已经被加载了!

来查看一下 /proc/devices 目录下显示的设备号:

可以看到 driver1 已经挂载好了,并且它的主设备号是244。

此时,虽然已经向系统注册了这个设备,并且主设备号已经分配了,但是,在/dev目录下,还不存在这个设备的节点,需要我们手动创建:

sudo mknod -m 660 /dev/driver1 c 244 0

检查一下设备节点是否创建成功:

$ ls -l /dev

关于设备节点,Linux 的应用层有一个 udev 服务,可以自动创建设备节点;

也就是:当驱动模块被加载的时候,自动在 /dev 目录下创建设备节点。当然了,我们需要在驱动程序中,提前告诉 udev 如何去创建;

下面会介绍:如何自动创建设备节点。

现在,设备的驱动程序已经加载了,设备节点也被创建好了,应用程序就可以来操作(读、写)这个设备了。

应用程序

我们把所有的应用程序,放在 ~/tmp/App/ 目录下。

$ cd ~/tmp

$ mkdir -p App/app_driver1

$ touch app_driver1.c

app_driver1.c 文件的内容如下:

image.png

这里演示的仅仅是通过打印信息来体现函数的调用,并没有实际的读取数据和写入数据。

因为,读写数据又涉及到复杂的用户空间和内核空间的数据拷贝问题。

应用程序准备妥当,接下来就是编译和测试了:

$ gcc app_driver1.c -o app_driver1

$ sudo ./app_driver1

应用程序的输出信息如下:

app_driver1$ sudo ./app_driver1

[sudo] password for xxxx: <输入用户密码>

read ret = 0

write ret = 0

从返回值来看,成功打开了设备,并且调用读函数、写函数都成功了!

根据Linux系统的驱动框架,应用层的 open、read、write 函数被调用的时候,驱动程序中对应的函数就会被执行:

image.png

我们已经在驱动程序的这三个函数中打印了信息,继续用dmesg命令查看一下:

卸载驱动模块

卸载指令:

$ sudo rmmod driver1

继续用dmesg指令来查看驱动程序中的打印信息:

说明驱动程序中的 driver1_exit() 函数被调用了。

此时,我们来看一下 /proc/devices 目录下变化:

可以看到:刚才设备号为244的  driver1 已经被系统卸载了!因为驱动程序中的 unregister_chrdev(major,"driver1"); 函数被执行了。

但是,由于 /dev 目录下的设备节点 driver1 ,是刚才手动创建的,因此需要我们手动删除。

$ sudo rm /dev/driver1

小结

以上,就是字符设备的最简单驱动程序!

从编写过程可以看出:Linux系统已经设计好了一套驱动程序的框架。

我们只需要按照它要求,按部就班地把每一个函数或者是结构体,注册到系统中就可以了。

自动在 /dev 目录下创建设备节点

在上面的操作过程中,设备节点 /dev/driver1 是手动创建的。

Linux 系统的应用层提供了 udev 这个服务,可以帮助我们自动创建设备节点。我们现在就来把这个功能补上。

修改驱动程序

为了方便比较,添加的代码全部用宏定义 UDEV_ENABLE 控制起来。

driver1.c代码中,有 3 处变化:

1. 定义 2 个全局变量

#ifdef UDEV_ENABLE

static struct class  *driver1_class;

static struct device *driver1_dev;

#endif

2. driver1_init() 函数

image.png

3. driver1_exit() 函数

image.png

代码修改之后(也可以直接下载我放在网盘里的源代码),重新编译驱动模块:

$ make

生成driver1.ko驱动模块,然后加载它:

先确定一下:/proc/devices,/dev 目录下,已经没有刚才测试的设备了;

为了便于查看驱动程序中的打印信息,最好把 dmesg 输出的打印信息清理一下(指令:sudo dmesg -c);

$ sudo insmod driver1.ko

按照刚才的操作流程,我们需要来验证3个信息:

(1) 看一下驱动程序的打印信息(指令:dmesg):

(2) 看一下 /proc/devices 下的设备注册情况:

(3) 看一下 /dev 下,是否自动创建了设备节点:

通过以上3张图片,可以得到结论:驱动程序正确加载了,设备节点被自动创建了!

下面,就应该是应用程序登场测试了,代码不用修改,直接执行即可:

$ sudo ./app_driver1

[sudo] password for xxx: <输入用户密码>

read ret = 0

write ret = 0

应用层的函数返回值正确!

再看一下 dmesg 的输出信息:


声明: 本文由入驻OFweek维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。
侵权投诉

下载OFweek,一手掌握高科技全行业资讯

还不是OFweek会员,马上注册
打开app,查看更多精彩资讯 >
  • 长按识别二维码
  • 进入OFweek阅读全文
长按图片进行保存