一文详解Hive知识体系

园陌
关注

五、存储与压缩

5.1 Hive存储格式

Hive支持的存储数的格式主要有:TEXTFILE(行式存储) 、SEQUENCEFILE(行式存储)、ORC(列式存储)、PARQUET(列式存储)。

5.1.1 行式存储和列式存储

上图左边为逻辑表,右边第一个为行式存储,第二个为列式存储。

行存储的特点: 查询满足条件的一整行数据的时候,列存储则需要去每个聚集的字段找到对应的每个列的值,行存储只需要找到其中一个值,其余的值都在相邻地方,所以此时行存储查询的速度更快。select  *

列存储的特点: 因为每个字段的数据聚集存储,在查询只需要少数几个字段的时候,能大大减少读取的数据量;每个字段的数据类型一定是相同的,列式存储可以针对性的设计更好的设计压缩算法。select   某些字段效率更高。

5.1.2 TEXTFILE

默认格式,数据不做压缩,磁盘开销大,数据解析开销大。可结合Gzip、Bzip2使用(系统自动检查,执行查询时自动解压),但使用这种方式,hive不会对数据进行切分,从而无法对数据进行并行操作。

5.1.3 ORC格式

Orc (Optimized Row Columnar)是hive 0.11版里引入的新的存储格式。

可以看到每个Orc文件由1个或多个stripe组成,每个stripe250MB大小,这个Stripe实际相当于RowGroup概念,不过大小由4MB->250MB,这样能提升顺序读的吞吐率。每个Stripe里有三部分组成,分别是Index Data,Row Data,Stripe Footer:

Index Data:一个轻量级的index,默认是每隔1W行做一个索引。这里做的索引只是记录某行的各字段在Row Data中的offset。

Row Data:存的是具体的数据,先取部分行,然后对这些行按列进行存储。对每个列进行了编码,分成多个Stream来存储。

Stripe Footer:存的是各个stripe的元数据信息

每个文件有一个File Footer,这里面存的是每个Stripe的行数,每个Column的数据类型信息等;每个文件的尾部是一个PostScript,这里面记录了整个文件的压缩类型以及FileFooter的长度信息等。在读取文件时,会seek到文件尾部读PostScript,从里面解析到File Footer长度,再读FileFooter,从里面解析到各个Stripe信息,再读各个Stripe,即从后往前读。

5.1.4 PARQUET格式

Parquet是面向分析型业务的列式存储格式,由Twitter和Cloudera合作开发,2015年5月从Apache的孵化器里毕业成为Apache顶级项目。

Parquet文件是以二进制方式存储的,所以是不可以直接读取的,文件中包括该文件的数据和元数据,因此Parquet格式文件是自解析的。

通常情况下,在存储Parquet数据的时候会按照Block大小设置行组的大小,由于一般情况下每一个Mapper任务处理数据的最小单位是一个Block,这样可以把每一个行组由一个Mapper任务处理,增大任务执行并行度。Parquet文件的格式如下图所示。

上图展示了一个Parquet文件的内容,一个文件中可以存储多个行组,文件的首位都是该文件的Magic Code,用于校验它是否是一个Parquet文件,Footer length记录了文件元数据的大小,通过该值和文件长度可以计算出元数据的偏移量,文件的元数据中包括每一个行组的元数据信息和该文件存储数据的Schema信息。除了文件中每一个行组的元数据,每一页的开始都会存储该页的元数据,在Parquet中,有三种类型的页:数据页、字典页和索引页。数据页用于存储当前行组中该列的值,字典页存储该列值的编码字典,每一个列块中最多包含一个字典页,索引页用来存储当前行组下该列的索引,目前Parquet中还不支持索引页。

5.2 Hive压缩格式

在实际工作当中,hive当中处理的数据,一般都需要经过压缩,前期我们在学习hadoop的时候,已经配置过hadoop的压缩,我们这里的hive也是一样的可以使用压缩来节省我们的MR处理的网络带宽

mr支持的压缩格式:

压缩格式工具算法文件扩展名是否可切分DEFAULT无DEFAULT.deflate否GzipgzipDEFAULT.gz否bzip2bzip2bzip2.bz2是LZOlzopLZO.lzo否LZ4无LZ4.lz4否Snappy无Snappy.snappy否

hadoop支持的解压缩的类:

压缩格式对应的编码/解码器DEFLATEorg.apache.hadoop.io.compress.DefaultCodecgziporg.apache.hadoop.io.compress.GzipCodecbzip2org.apache.hadoop.io.compress.BZip2CodecLZOcom.hadoop.compression.lzo.LzopCodecLZ4org.apache.hadoop.io.compress.Lz4CodecSnappyorg.apache.hadoop.io.compress.SnappyCodec

压缩性能的比较:

压缩算法原始文件大小压缩文件大小压缩速度解压速度gzip8.3GB1.8GB17.5MB/s58MB/sbzip28.3GB1.1GB2.4MB/s9.5MB/sLZO8.3GB2.9GB49.3MB/s74.6MB/s

Snappy生成的压缩文件要大20%到100%。在64位模式下的core i7处理器的单内核上,Snappy以250 MB/秒或更多的速度压缩,并以500 MB/秒或更多的速度解压。

实现压缩hadoop需要配置的压缩参数:

hive配置压缩的方式:

开启map端的压缩方式:1.1)开启hive中间传输数据压缩功能
hive (default)>set hive.exec.compress.intermediate=true;
1.2)开启mapreduce中map输出压缩功能
hive (default)>set mapreduce.map.output.compress=true;
1.3)设置mapreduce中map输出数据的压缩方式
hive (default)>set mapreduce.map.output.compress.codec= org.apache.hadoop.io.compress.SnappyCodec;
1.4)执行查询语句
select count(1) from score;
开启reduce端的压缩方式1)开启hive最终输出数据压缩功能
hive (default)>set hive.exec.compress.output=true;
2)开启mapreduce最终输出数据压缩
hive (default)>set mapreduce.output.fileoutputformat.compress=true;
3)设置mapreduce最终数据输出压缩方式
hive (default)> set mapreduce.output.fileoutputformat.compress.codec = org.apache.hadoop.io.compress.SnappyCodec;
4)设置mapreduce最终数据输出压缩为块压缩
hive (default)>set mapreduce.output.fileoutputformat.compress.type=BLOCK;
5)测试一下输出结果是否是压缩文件
insert overwrite local directory '/export/servers/snappy' select * from score distribute by s_id sort by s_id desc;
5.3  存储和压缩相结合

ORC存储方式的压缩:

KeyDefaultNotesorc.compressZLIB高级压缩(可选: NONE, ZLIB, SNAPPY)orc.compress.size262,144每个压缩块中的字节数orc.stripe.size67,108,864每条stripe中的字节数orc.row.index.stride10,000索引条目之间的行数(必须是>= 1000)orc.create.indextrue是否创建行索引orc.bloom.filter.columns""逗号分隔的列名列表,应该为其创建bloom过滤器orc.bloom.filter.fpp0.05bloom过滤器的假阳性概率(必须是>0.0和<1.0)

创建一个非压缩的ORC存储方式:

1)建表语句
   create table log_orc_none(
   track_time string,
   url string,
   session_id string,
   referer string,
   ip string,
   end_user_id string,
   city_id string
   )ROW FORMAT DELIMITED FIELDS TERMINATED BY ' ' STORED AS orc tblproperties ("orc.compress"="NONE");
2)插入数据
insert into table log_orc_none select * from log_text ;
3)查看插入后数据
dfs -du -h /user/hive/warehouse/myhive.db/log_orc_none;
结果显示:
7.7 M  /user/hive/warehouse/log_orc_none/123456_0

创建一个SNAPPY压缩的ORC存储方式:

1)建表语句
   create table log_orc_snappy(
   track_time string,
   url string,
   session_id string,
   referer string,
   ip string,
   end_user_id string,
   city_id string
   )ROW FORMAT DELIMITED FIELDS TERMINATED BY ' ' STORED AS orc tblproperties ("orc.compress"="SNAPPY");
2)插入数据
insert into table log_orc_snappy select * from log_text ;
3)查看插入后数据
dfs -du -h /user/hive/warehouse/myhive.db/log_orc_snappy ;
结果显示:
3.8 M  /user/hive/warehouse/log_orc_snappy/123456_0
4)上一节中默认创建的ORC存储方式,导入数据后的大小为
2.8 M  /user/hive/warehouse/log_orc/123456_0
比Snappy压缩的还小。原因是orc存储文件默认采用ZLIB压缩。比snappy压缩的小。
5)存储方式和压缩总结:
在实际的项目开发当中,hive表的数据存储格式一般选择:orc或parquet。压缩方式一般选择snappy。
5.4 主流存储文件性能对比

从存储文件的压缩比和查询速度两个角度对比。

压缩比比较:

TextFile(1)创建表,存储数据格式为TEXTFILE
   create table log_text (
   track_time string,
   url string,
   session_id string,
   referer string,
   ip string,
   end_user_id string,
   city_id string
   )ROW FORMAT DELIMITED FIELDS TERMINATED BY ' ' STORED AS TEXTFILE ;
(2)向表中加载数据
load data local inpath '/export/servers/hivedatas/log.data' into table log_text ;
(3)查看表中数据大小,大小为18.1M
dfs -du -h /user/hive/warehouse/myhive.db/log_text;
结果显示:
18.1 M  /user/hive/warehouse/log_text/log.data
ORC(1)创建表,存储数据格式为ORC
   create table log_orc(
   track_time string,
   url string,
   session_id string,
   referer string,
   ip string,
   end_user_id string,
   city_id string
   )ROW FORMAT DELIMITED FIELDS TERMINATED BY ' ' STORED AS orc ;
(2)向表中加载数据
insert into table log_orc select * from log_text ;
(3)查看表中数据大小
dfs -du -h /user/hive/warehouse/myhive.db/log_orc;
结果显示:
2.8 M  /user/hive/warehouse/log_orc/123456_0
Parquet1)创建表,存储数据格式为parquet
   create table log_parquet(
   track_time string,
   url string,
   session_id string,
   referer string,
   ip string,
   end_user_id string,
   city_id string
   )ROW FORMAT DELIMITED FIELDS TERMINATED BY ' ' STORED AS PARQUET ;
2)向表中加载数据
insert into table log_parquet select * from log_text ;
3)查看表中数据大小
dfs -du -h /user/hive/warehouse/myhive.db/log_parquet;
结果显示:
13.1 M  /user/hive/warehouse/log_parquet/123456_0

数据压缩比结论:

ORC >  Parquet >  textFile

存储文件的查询效率测试

textFilehive (default)> select count(*) from log_text;
_c0
100000
Time taken: 21.54 seconds, Fetched: 1 row(s)  
ORChive (default)> select count(*) from log_orc;
_c0
100000
Time taken: 20.867 seconds, Fetched: 1 row(s)
Parquethive (default)> select count(*) from log_parquet;
_c0
100000
Time taken: 22.922 seconds, Fetched: 1 row(s)

存储文件的查询效率比较:

ORC > TextFile > Parquet

声明: 本文由入驻OFweek维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。
侵权投诉

下载OFweek,一手掌握高科技全行业资讯

还不是OFweek会员,马上注册
打开app,查看更多精彩资讯 >
  • 长按识别二维码
  • 进入OFweek阅读全文
长按图片进行保存