03 为产业智能化全面护航
每一次工业革命都不是纯粹的技术革命,正在进行的第四次工业革命自然也不例外,产业智能化的过程中仍存在诸多隐形制约,诸如专业人才的匮乏、产业氛围的缺失、市场链条的不完善等等。
百度俨然意识到了这些问题,WAVE SUMMIT 2021深度学习开发者峰会除了主论坛外,百度还设置了5个平行论坛,除了前面提到的飞桨框架的创新升级、智能硬件生态,将不小的篇幅留给了开源项目分享、产业实践案例和融合人才培养,正在从多个维度强化飞桨的合作生态。
首先是开源生态的建设。
繁荣的开源社区离不开优秀的开源项目,飞桨深谙其中的道理,不仅在平行论坛中邀请到知名开源项目的技术负责人各抒己见,还顺势推出了面向核心开发者的领航计划,以PPDE、PPSIG特殊兴趣小组、飞桨领航团等组织形式,进行开源社区和开源项目合作。
然后是产业氛围的培养。
针对产业应用落地中遇到的种种挑战,飞桨选择和企业负责人、开发者一同探索产业智能化的有效路径,并在全新升级的《飞桨企业案例精选》中囊括了9大行业、34个企业智能化案例的技术思路。同时飞桨还在3月份启动技术伙伴计划,基于百度已有的AI产业落地经验深度赋能行业智能化企业,实现行业AI技术方案的输出、研讨和共创,短短两个月的时间里就有130多家企业报名。
最后是产教融合的探索。
AI人才的不足已然成了社会的常态问题,在AICA首席架构师培养计划,AI快车道,以赛促学等人才培养机制外,飞桨还将目光瞄向了产教融合。比如飞桨和清华大学、吉林大学、郑州大学进行了创新创业实验室的合作签约,一同打造产业智能化的预备军;此外百度已经累计培训570所高校的2000多名教师,其中226所高校已经基于飞桨开设学分课程,以实际行动点燃了中国AI人才培养的星星之火。
除此之外,飞桨还将陆续投入15亿元资金和资源,全面开启飞桨“大航海”计划,涵盖启航、护航、领航三大生态航道。其中“大航海”护航计划,将在未来三年投入10亿元资金,支持10万家企业智能化升级,与产业界一起培育百万AI人才。
做一个总结的话,飞桨已经在一定范围内验证了人工智能的落地价值,下一阶段的目标正是形成以社会化协作为特征的AI大生产。所以飞桨并未固守深度学习框架的角色,而是在正确的方向上笃定与坚持,深入到产业的细枝末节,从多个维度为产业智能化护航,为中国的新一轮工业革命护航。
04 写在最后
百度集团副总裁吴甜在演讲中讲述了百度对于人工智能进入工业大生产阶段的路径分析:
第一阶段是企业中有少数先行人员尝试引入AI进行原型验证,称之为AI先行者探路阶段;当进行了验证产生效益后,会从个人实践转变成建设团队来学习和应用AI,称之为AI工作坊应用阶段;当企业进行大量的AI应用,几百、几千人一起工作,多人多任务协同生产,就进入了AI工业大生产阶段,更长期看,还会实现社会化协同大生产。
“AI先行者探路”阶段,需要有适配场景的模型、调优工具以及部署支持,实现AI算法的快速验证落地,解决实际问题。飞桨提供了在工业场景中实践打磨过的丰富模型库,多端多平台的推理部署工具链,全面灵活的硬件适配架构和生态基础,保障AI先行者探路成功。
从个人实践到带领团队的“AI工作坊应用”阶段,面临的是团队里专业AI研发人数少,不同专业背景的成员要一起快速学习AI模型研发的问题。飞桨丰富且多层次的产品结构,涵盖可视化界面、场景类套件、算法类套件、模型库、核心框架,非常适用于这个阶段的团队应用AI创新,同时这个过程中团队成员也会持续成长,实现AI能力研发的进阶。
到了“AI工业大生产”阶段,多人多任务协同生产,算力机器和开发人员的效能提升是关键。飞桨企业级AI开发平台提供高效的算力管理与调度、全流程的集成开发环境,平台化赋能AI大生产。再进一步发展,从企业内部的多人多任务分工协同,还会走向全社会的AI大生产协同。
从飞桨平台的数据可以看到,随着人工智能和产业的融合,飞桨已经聚集了320万开发者,服务了12万企业,创建了36万模型,覆盖到了工业、能源、金融、医疗、农业、城市管理、交通、信息技术等各种各样的行业和场景。而且,这组数据还在持续增长。相信未来繁荣的社会化AI大生产协同一定能实现。
这大抵就是飞桨持续进化的内部节奏,折射到整个产业层面上,飞桨正在携手各行各业生态伙伴和开发者,促进产业链与创新链的深度融合,加速人工智能进入到规模化应用的工业大生产时代。