detectron2系列:config软件包

磐创AI
关注

# ROI HEADS options

# ---------------------------------------------------------------------------- #

_C.MODEL.ROI_HEADS = CN()

_C.MODEL.ROI_HEADS.NAME = "Res5ROIHeads"

# Number of foreground classes

_C.MODEL.ROI_HEADS.NUM_CLASSES = 80

# Names of the input feature maps to be used by ROI heads

# Currently all heads (box, mask, ...) use the same input feature map list

# e.g., ["p2", "p3", "p4", "p5"] is commonly used for FPN

_C.MODEL.ROI_HEADS.IN_FEATURES = ["res4"]

# IOU overlap ratios [IOU_THRESHOLD]

# Overlap threshold for an RoI to be considered background (if < IOU_THRESHOLD)

# Overlap threshold for an RoI to be considered foreground (if >= IOU_THRESHOLD)

_C.MODEL.ROI_HEADS.IOU_THRESHOLDS = [0.5]

_C.MODEL.ROI_HEADS.IOU_LABELS = [0, 1]

# RoI minibatch size *per image* (number of regions of interest [ROIs])

# Total number of RoIs per training minibatch =

#   ROI_HEADS.BATCH_SIZE_PER_IMAGE * SOLVER.IMS_PER_BATCH

# E.g., a common configuration is: 512 * 16 = 8192

_C.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 512

# Target fraction of RoI minibatch that is labeled foreground (i.e. class > 0)

_C.MODEL.ROI_HEADS.POSITIVE_FRACTION = 0.25

# Only used on test mode

# Minimum score threshold (assuming scores in a [0, 1] range); a value chosen to

# balance obtaining high recall with not having too many low precision

# detections that will slow down inference post processing steps (like NMS)

# A default threshold of 0.0 increases AP by ~0.2-0.3 but significantly slows down

# inference.

_C.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.05

# Overlap threshold used for non-maximum suppression (suppress boxes with

# IoU >= this threshold)

_C.MODEL.ROI_HEADS.NMS_THRESH_TEST = 0.5

# If True, augment proposals with ground-truth boxes before sampling proposals to

# train ROI heads.

_C.MODEL.ROI_HEADS.PROPOSAL_APPEND_GT = True

# ---------------------------------------------------------------------------- #

# Box Head

# ---------------------------------------------------------------------------- #

_C.MODEL.ROI_BOX_HEAD = CN()

# C4 don't use head name option

# Options for non-C4 models: FastRCNNConvFCHead,

_C.MODEL.ROI_BOX_HEAD.NAME = ""

# Default weights on (dx, dy, dw, dh) for normalizing bbox regression targets

# These are empirically chosen to approximately lead to unit variance targets

_C.MODEL.ROI_BOX_HEAD.BBOX_REG_WEIGHTS = (10.0, 10.0, 5.0, 5.0)

# The transition point from L1 to L2 loss. Set to 0.0 to make the loss simply L1.

_C.MODEL.ROI_BOX_HEAD.SMOOTH_L1_BETA = 0.0

_C.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION = 14

_C.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO = 0

# Type of pooling operation applied to the incoming feature map for each RoI

_C.MODEL.ROI_BOX_HEAD.POOLER_TYPE = "ROIAlignV2"

_C.MODEL.ROI_BOX_HEAD.NUM_FC = 0

# Hidden layer dimension for FC layers in the RoI box head

_C.MODEL.ROI_BOX_HEAD.FC_DIM = 1024

_C.MODEL.ROI_BOX_HEAD.NUM_CONV = 0

# Channel dimension for Conv layers in the RoI box head

_C.MODEL.ROI_BOX_HEAD.CONV_DIM = 256

# Normalization method for the convolution layers.

# Options: "" (no norm), "GN", "SyncBN".

_C.MODEL.ROI_BOX_HEAD.NORM = ""

# Whether to use class agnostic for bbox regression

_C.MODEL.ROI_BOX_HEAD.CLS_AGNOSTIC_BBOX_REG = False

# If true, RoI heads use bounding boxes predicted by the box head rather than proposal boxes.

_C.MODEL.ROI_BOX_HEAD.TRAIN_ON_PRED_BOXES = False

# ---------------------------------------------------------------------------- #

# Cascaded Box Head

# ---------------------------------------------------------------------------- #

_C.MODEL.ROI_BOX_CASCADE_HEAD = CN()

# The number of cascade stages is implicitly defined by the length of the following two configs.

_C.MODEL.ROI_BOX_CASCADE_HEAD.BBOX_REG_WEIGHTS = (

(10.0, 10.0, 5.0, 5.0),

(20.0, 20.0, 10.0, 10.0),

(30.0, 30.0, 15.0, 15.0),

_C.MODEL.ROI_BOX_CASCADE_HEAD.IOUS = (0.5, 0.6, 0.7)

# ---------------------------------------------------------------------------- #

# Mask Head

# ---------------------------------------------------------------------------- #

_C.MODEL.ROI_MASK_HEAD = CN()

_C.MODEL.ROI_MASK_HEAD.NAME = "MaskRCNNConvUpsampleHead"

_C.MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION = 14

_C.MODEL.ROI_MASK_HEAD.POOLER_SAMPLING_RATIO = 0

_C.MODEL.ROI_MASK_HEAD.NUM_CONV = 0  # The number of convs in the mask head

_C.MODEL.ROI_MASK_HEAD.CONV_DIM = 256

# Normalization method for the convolution layers.

# Options: "" (no norm), "GN", "SyncBN".

_C.MODEL.ROI_MASK_HEAD.NORM = ""

# Whether to use class agnostic for mask prediction

_C.MODEL.ROI_MASK_HEAD.CLS_AGNOSTIC_MASK = False

# Type of pooling operation applied to the incoming feature map for each RoI

_C.MODEL.ROI_MASK_HEAD.POOLER_TYPE = "ROIAlignV2"

# ---------------------------------------------------------------------------- #

# Keypoint Head

# ---------------------------------------------------------------------------- #

_C.MODEL.ROI_KEYPOINT_HEAD = CN()

_C.MODEL.ROI_KEYPOINT_HEAD.NAME = "KRCNNConvDeconvUpsampleHead"

_C.MODEL.ROI_KEYPOINT_HEAD.POOLER_RESOLUTION = 14

_C.MODEL.ROI_KEYPOINT_HEAD.POOLER_SAMPLING_RATIO = 0

_C.MODEL.ROI_KEYPOINT_HEAD.CONV_DIMS = tuple(512 for _ in range(8))

_C.MODEL.ROI_KEYPOINT_HEAD.NUM_KEYPOINTS = 17  # 17 is the number of keypoints in COCO.

# Images with too few (or no) keypoints are excluded from training.

_C.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE = 1

# Normalize by the total number of visible keypoints in the minibatch if True.

# Otherwise, normalize by the total number of keypoints that could ever exist

# in the minibatch.

# The keypoint softmax loss is only calculated on visible keypoints.

# Since the number of visible keypoints can vary significantly between

# minibatches, this has the effect of up-weighting the importance of

# minibatches with few visible keypoints. (Imagine the extreme case of

# only one visible keypoint versus N: in the case of N, each one

# contributes 1/N to the gradient compared to the single keypoint

# determining the gradient direction). Instead, we can normalize the

# loss by the total number of keypoints, if it were the case that all

# keypoints were visible in a full minibatch. (Returning to the example,

# this means that the one visible keypoint contributes as much as each

# of the N keypoints.)

_C.MODEL.ROI_KEYPOINT_HEAD.NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS = True

# Multi-task loss weight to use for keypoints

# Recommended values:

#   - use 1.0 if NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS is True

#   - use 4.0 if NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS is False

_C.MODEL.ROI_KEYPOINT_HEAD.LOSS_WEIGHT = 1.0

# Type of pooling operation applied to the incoming feature map for each RoI

_C.MODEL.ROI_KEYPOINT_HEAD.POOLER_TYPE = "ROIAlignV2"

# ---------------------------------------------------------------------------- #

# Semantic Segmentation Head

# ---------------------------------------------------------------------------- #

_C.MODEL.SEM_SEG_HEAD = CN()

_C.MODEL.SEM_SEG_HEAD.NAME = "SemSegFPNHead"

_C.MODEL.SEM_SEG_HEAD.IN_FEATURES = ["p2", "p3", "p4", "p5"]

# Label in the semantic segmentation ground truth that is ignored, i.e., no loss is calculated for

# the correposnding pixel.

_C.MODEL.SEM_SEG_HEAD.IGNORE_VALUE = 255

# Number of classes in the semantic segmentation head

_C.MODEL.SEM_SEG_HEAD.NUM_CLASSES = 54

# Number of channels in the 3x3 convs inside semantic-FPN heads.

_C.MODEL.SEM_SEG_HEAD.CONVS_DIM = 128

# Outputs from semantic-FPN heads are up-scaled to the COMMON_STRIDE stride.

_C.MODEL.SEM_SEG_HEAD.COMMON_STRIDE = 4

# Normalization method for the convolution layers. Options: "" (no norm), "GN".

_C.MODEL.SEM_SEG_HEAD.NORM = "GN"

_C.MODEL.SEM_SEG_HEAD.LOSS_WEIGHT = 1.0

_C.MODEL.PANOPTIC_FPN = CN()

# Scaling of all losses from instance detection / segmentation head.

_C.MODEL.PANOPTIC_FPN.INSTANCE_LOSS_WEIGHT = 1.0

# options when combining instance & semantic segmentation outputs

_C.MODEL.PANOPTIC_FPN.COMBINE = CN({"ENABLED": True})

_C.MODEL.PANOPTIC_FPN.COMBINE.OVERLAP_THRESH = 0.5

_C.MODEL.PANOPTIC_FPN.COMBINE.STUFF_AREA_LIMIT = 4096

_C.MODEL.PANOPTIC_FPN.COMBINE.INSTANCES_CONFIDENCE_THRESH = 0.5

# ---------------------------------------------------------------------------- #

# RetinaNet Head

# ---------------------------------------------------------------------------- #

_C.MODEL.RETINANET = CN()

# This is the number of foreground classes.

_C.MODEL.RETINANET.NUM_CLASSES = 80

_C.MODEL.RETINANET.IN_FEATURES = ["p3", "p4", "p5", "p6", "p7"]

# Convolutions to use in the cls and bbox tower

# NOTE: this doesn't include the last conv for logits

_C.MODEL.RETINANET.NUM_CONVS = 4

# IoU overlap ratio [bg, fg] for labeling anchors.

# Anchors with < bg are labeled negative (0)

# Anchors  with >= bg and < fg are ignored (-1)

# Anchors with >= fg are labeled positive (1)

_C.MODEL.RETINANET.IOU_THRESHOLDS = [0.4, 0.5]

_C.MODEL.RETINANET.IOU_LABELS = [0, -1, 1]

# Prior prob for rare case (i.e. foreground) at the beginning of training.

# This is used to set the bias for the logits layer of the classifier subnet.

# This improves training stability in the case of heavy class imbalance.

_C.MODEL.RETINANET.PRIOR_PROB = 0.01

# Inference cls score threshold, only anchors with score > INFERENCE_TH are

# considered for inference (to improve speed)

_C.MODEL.RETINANET.SCORE_THRESH_TEST = 0.05

_C.MODEL.RETINANET.TOPK_CANDIDATES_TEST = 1000

_C.MODEL.RETINANET.NMS_THRESH_TEST = 0.5

# Weights on (dx, dy, dw, dh) for normalizing Retinanet anchor regression targets

_C.MODEL.RETINANET.BBOX_REG_WEIGHTS = (1.0, 1.0, 1.0, 1.0)

# Loss parameters

_C.MODEL.RETINANET.FOCAL_LOSS_GAMMA = 2.0

_C.MODEL.RETINANET.FOCAL_LOSS_ALPHA = 0.25

_C.MODEL.RETINANET.SMOOTH_L1_LOSS_BETA = 0.1

# ---------------------------------------------------------------------------- #

# ResNe[X]t options (ResNets = {ResNet, ResNeXt}

# Note that parts of a resnet may be used for both the backbone and the head

# These options apply to both

# ---------------------------------------------------------------------------- #

_C.MODEL.RESNETS = CN()

_C.MODEL.RESNETS.DEPTH = 50

_C.MODEL.RESNETS.OUT_FEATURES = ["res4"]  # res4 for C4 backbone, res2..5 for FPN backbone

# Number of groups to use; 1 ==> ResNet; > 1 ==> ResNeXt

_C.MODEL.RESNETS.NUM_GROUPS = 1

# Options: FrozenBN, GN, "SyncBN", "BN"

_C.MODEL.RESNETS.NORM = "FrozenBN"

# Baseline width of each group.

# Scaling this parameters will scale the width of all bottleneck layers.

_C.MODEL.RESNETS.WIDTH_PER_GROUP = 64

# Place the stride 2 conv on the 1x1 filter

# Use True only for the original MSRA ResNet; use False for C2 and Torch models

_C.MODEL.RESNETS.STRIDE_IN_1X1 = True

# Apply dilation in stage "res5"

_C.MODEL.RESNETS.RES5_DILATION = 1

# Output width of res2. Scaling this parameters will scale the width of all 1x1 convs in ResNet

_C.MODEL.RESNETS.RES2_OUT_CHANNELS = 256

_C.MODEL.RESNETS.STEM_OUT_CHANNELS = 64

# Apply Deformable Convolution in stages

# Specify if apply deform_conv on Res2, Res3, Res4, Res5

_C.MODEL.RESNETS.DEFORM_ON_PER_STAGE = [False, False, False, False]

# Use True to use modulated deform_conv (DeformableV2, https://arxiv.org/abs/1811.11168);

# Use False for DeformableV1.

_C.MODEL.RESNETS.DEFORM_MODULATED = False

# Number of groups in deformable conv.

_C.MODEL.RESNETS.DEFORM_NUM_GROUPS = 1

# ---------------------------------------------------------------------------- #

声明: 本文由入驻OFweek维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。
侵权投诉

下载OFweek,一手掌握高科技全行业资讯

还不是OFweek会员,马上注册
打开app,查看更多精彩资讯 >
  • 长按识别二维码
  • 进入OFweek阅读全文
长按图片进行保存