数据仓库非刚需AI易成空心球,中国BI要如何落地?

IT168
关注

在企业走向数据驱动的过程中,BI是重要的组成部分。而国内不少BI厂商都提供从数据仓库到报表的一站式解决方案,能够提供数据仓库某种程度上体现了厂商的技术实力。不少企业也选择搭建数据仓库将数据统一归集方便企业更好调用数据释放数据价值,但数据仓库实施周期长投入高的特点也让一些企业望而却步,那么数据仓库是企业的必须吗?

数据仓库非企业所必须

帆软是国内知名的BI厂商,专注BI十四年,可以提供从数据仓库到报表、大屏可视化的一站式BI解决方案。帆软数据应用研究院院长杨扬介绍在帆软合作的客户中,包括大的企事业单位在内的大部分客户都没有搭建数据仓库。数据仓库比较重,而且实施周期长,在长实施周期内领导不易发现数据仓库对日常经营管理带来的价值。很多企业会选择搭建一个简单的ODS层、主数据或者中间库,结合前端业务一个小版块比如财务先用起来,有效果再逐步拓展到其它业务。

“当前的这种数据仓库,很多时候还面临一个比较大的问题,就是会被各个业务条线的绩效考核牵引,会导致数据仓库面临大量的调整,所以说是不是要建数据仓库我们可以做一个保留,但是做数据加工整理、聚合整理是有必要的。”杨扬强调,面向主题的数据仓库数据本身是冗余的,大量的调整容易会导致数据口径出错,影响数据使用,所以数据仓库应该拒绝前端交互行为,都是通过ETL抽取数据。比如有些企业会想要通过帆软的填报修改数据仓库的数据,其实会对数据仓库的数据质量带来很多的挑战,

若企业不搭建数据仓库,有的会选择某个业务板块或者主题建中间库等,杨扬介绍选主题容易走入误区,有的企业做了一堆主题分析,结果这个主题分析对业务或者对企业的管理经营没什么太大帮助,这样反而造成负担。如果企业选主题分析可以从以下两点考虑选取:

一是从上向下做,选择高层关注的主题,需要选主题分析的企业一般想在投入产出上快速看到效果,所以第一个考虑满足企业高层的需求,选择企业内部比较关注的点。比如零售企业会选门店盘点,银行会做一些存款产品的分析等,这样高层可能会持续地推动项目,使之不断迭代完善。

二是从下向上做,要把一线基层的KPI以可视化的方式能够让让一线员工能看到,这样员工也会去推动项目不断完善。

不少人认为国内数据底子薄弱体现在数据积累参差不齐,有从业者会指出“都没有建数据仓库”来表达这种薄弱,与国外相比国内企业的整体数字化程度确实存在差距,而适合国情的产品和解决方案才最合适。

杨扬认为对于国内BI厂商来说,国产化进程还会面临诸多难题和挑战。首先大数据方面的标准参差不齐,国内厂商在做产品规划时没有一个统一的导向和标准。其次,虽然国内产品可以满足大部分的数据分析和应用需求,但是一些前沿技术,比如AI+BI、数据挖掘等,还处于理论或者不成熟阶段。

数据标准参差不齐

数据的价值正在日益凸显,而市场进入数据资产化的标志是数据标准的大规模建立。多位大数据/BI专家认为数据标准的建立是企业走向数据驱动的关键,也是当下国内的一个亟待解决的难点。

实际上企业有痛点和诉求,制定数据标准的工作一直在进行着,如果数据统计口径不一样,在前端查看同样的指标,在不同系统会看到不同的结果。就如同有的叫“男人”,有的叫“man”,类似这样的差异可能不利于企业做查询分析、营收测算。“数据标准和数据仓库不一样,数据仓库更多的时候是在做数据的集合,数据标准更多的是在做数据标准的制定。比如编码规则、命名规则或者划分、分享,做什么接口等。”杨扬指出。

不同行业制定数据标准有自己的原则,数据标准制定的时候并不会考虑所有的数据,更多时候是把一些主数据或者很多系统都会用到的数据,比如客户信息或者做分析衡量都会用到的数据,去制定一些对应的数据标准。其中,金融业会把数据标准以其核心系统为准,然后其它边缘系统按照各自的业务主题来定。

其实很多大的企业会有数据标准管理委员会这样的部门,负责制定标准、搭建管理平台和制定行政管理规范。“从标准到管理平台做到管理规范这样一系列操作,它其实就相当于是在制定整个的一个数据标准。”杨扬指出,数据标准的核心点在于一套标准要用在多个板块上面,所以要有联通的板块一起进行设计,没必要追求一套标准适用所有,因为各个行业都有自身通用的一些标准,而这些通用标准只能解决最简单基础问题。

但是数据标准的规范有时候也会受到业务排斥,比如指标分为基础指标和派生指标。在实际运作过程中,数据标准对应的基础信息可能并不能解决业务的问题。所以有的时候业务部门还是比较抵触排斥梳理好的数据标准。

可见企业走向数据驱动并非易事,数据标准可以从企业内部外延到企业外的行业、政府等,大数据时代更多维全面的数据连接打通流转才能有全局的视角,释放数据更大的价值。有业内从业者指出企业内部数据整合打通比较容易,而外部数据由于标准不一等问题难以有真实性和健康度的保障。杨扬认为不论什么规模的企业,目前大部分企业内部数据都没有做到很好掌控,比如即使部署了很多IT系统,还是有很多数据流转在Excel里。“内部的数据相对好掌握可能更多是从数据获取的角度以及在这个具体的某个特定板块下用这个数据的角度看,企业整体把数据给管控起来还是比较困难的。”

声明: 本文由入驻OFweek维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。
侵权投诉

下载OFweek,一手掌握高科技全行业资讯

还不是OFweek会员,马上注册
打开app,查看更多精彩资讯 >
  • 长按识别二维码
  • 进入OFweek阅读全文
长按图片进行保存