车万翔教授:ACL 2010-2020 研究趋势总结

将门创投
关注

文本生成强势上升

严格来讲自然语言处理应被分为自然语言处理和自然语言生成两个方向,然而受到技术的限制,传统的文本生成多采用基于模板的方法,因此在研究上并没有引起太多的关注。随着序列到序列模型的产生,人们意识到可以采用类似的方法进行逐词的文本生成,从而产生了大量的研究和应用问题,因此文本生成也成为了目前自然语言处理的热门研究领域。今年ACL上的研究热点如下图所示。

车万翔教授:ACL 2010-2020 研究趋势总结

问答系统绝地反击

随着斯坦福大学SQuAD数据集的诞生,以抽取式阅读理解为代表的问答系统近年来引起了大量的关注。但是为什么说是“绝地反击”呢?主要是因为在更久之前,问答系统就曾经是信息检索和自然语言处理领域的热门研究方向,但是受限于当时的技术手段,答案准确率并不是很高,因此该研究方向曾一度被人们所冷落。经过这几年的发展,问答系统的模型逐渐被预训练模型所统一,因此今年ACL上的相关文章更关注问答系统的各个子任务或引入更多资源。

车万翔教授:ACL 2010-2020 研究趋势总结

新任务和资源挑战机器

仍然是受预训练模型的影响,在很多刚被提出不久的自然语言处理任务上,机器的表现很快超过人类。因此最近有大量的研究工作试图提出对机器更具有挑战性的任务和资源,从而逼迫机器更像人一样“思考”。

车万翔教授:ACL 2010-2020 研究趋势总结

机器翻译有所衰落

几家欢乐几家愁,由于上述领域的快速崛起,更重要的是由于模型逐渐为Transformer所统一,使得机器翻译这一“老牌”自然语言处理任务受关注的程度有所降低。今年ACL的相关研究也分散到不同的翻译场景设置上。

车万翔教授:ACL 2010-2020 研究趋势总结

句法分析逐渐式微

和机器翻译类似,句法分析这一曾经自然语言处理领域的当家任务也逐渐式微。其背后的原因有两个:一方面是因为Biaffine Parser的出现证明了结构学习这一自然语言处理的特色问题,对于句法分析并不重要;另一方面,预训练模型的出现使得句法分析的处境更是雪上加霜。预训练模型不但能大幅提高句法分析的效果,更重要的是其内部已经蕴含了句法结构信息,因此就无需为下游任务提供显式的句法结构了。由于这些原因,今年ACL上句法分析的热点也主要集中在了研究探针任务和句法分析的应用上了。不过苏州大学李正华老师所提出的高阶TreeCRF模型还是能进一步提升句法分析的效果,这一点非常难得。

车万翔教授:ACL 2010-2020 研究趋势总结

声明: 本文由入驻OFweek维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。
侵权投诉

下载OFweek,一手掌握高科技全行业资讯

还不是OFweek会员,马上注册
打开app,查看更多精彩资讯 >
  • 长按识别二维码
  • 进入OFweek阅读全文
长按图片进行保存