机器学习推动运输与物流行业变革的四种方式

千家网
关注

不过,卡车运输业正在经历全国至少10万名驾驶员的短缺。目前,有一种解决方案——自动驾驶卡车。在TuSimple,技术团队部署了100多个基于云的AI模块,以安全有效地进行100英里以上的自主商业交付。即使在装满卡车的时速为每小时65英里的情况下,TuSimple的先进AI算法也可以区分共享道路的车辆类型,并确定其速度,并保持TuSimple的卡车在车道中居中,其精度为正负 5厘米。

在东南亚,叫车公司Grab希望提高其实时按需匹配和供应算法。它求助于机器学习工具,以访问支持150万次预订的实时数据计算和数据流,最终将其匹配和供应性能提高30%。

AI和机器学习对T&L行业产生积极影响的另一个例子是Lyft使用AI驱动的时间序列分析解决方案。该技术会自动发现异常现象,从而发出更大的业务问题,并检测需要检查的事件。Lyft通过不必投资大型内部数据科学或手动检查仪表板而节省了大量成本。

正确处理

当然,预测的准确性是运输和物流公司的主要因素,而位于阿联酋的Aramex(提供国际和国内快递、货运代理和在线购物服务)的实时运输业务每分钟处理数千个请求。通过部署完全托管的基于云的服务,使开发人员和数据科学家能够训练,构建和部署AI和ML模型,Aramax的运输时间预测准确性提高了74%,从而减少了与交付相关的服务呼叫40%。

基于云的机器学习和AI工具也是Amazon.com的核心,每年成功地交付数十亿个包裹,从客户下订单到完成订单再到交付。我们使用预测算法来预测客户可能要订购的商品,以确保我们的仓库有足够的供应。我们在AWS上的AI和机器学习服务还为我们的履行中心机器人,与我们的交付合作伙伴合作的方法提供了动力,甚至还优化了我们的交付路线。

过去几年的经验教训很明确:在运输与物流行业中的竞争从未如此复杂,而盈利能力只有真正的技术驱动效率才能带来。幸运的是,人工智能和机器学习的新创新通过为企业提供解决其最大问题和发展所需的先进工具,为他们提供了巨大的优势。


声明: 本文系OFweek根据授权转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们。
侵权投诉

下载OFweek,一手掌握高科技全行业资讯

还不是OFweek会员,马上注册
打开app,查看更多精彩资讯 >
  • 长按识别二维码
  • 进入OFweek阅读全文
长按图片进行保存