香港大学等机构提出学习点云内蕴结构表示的非监督学习新方法

将门创投
关注

下图还显示了抽取的特征与概率图的加权结果,下图显示了二维情况下的t-SNE结果,可以看到四类不同目标点云的嵌入空间在16个结构点下对应的语义分类结果,学习到的特征具有显著的聚类特性,同时还具有对成分布的特征,这主要是由于PointNet++不具有对称不变性,添加对成不变性损失也是未来改进的方向之一:

为了验证模型对于不同密度输入点云的鲁棒性,研究人员分别输入了256,1024,2048,4096数量的点云,下图中第一行的彩色点表示了16个结构点,第二行是1024个稠密结构点,显示了模型对于不同输入密度的鲁棒性:

此外对于非均匀分布的点云(上)和真实情况下包含很多噪声的扫描点(下)都具有良好的性能:


声明: 本文由入驻OFweek维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。
侵权投诉

下载OFweek,一手掌握高科技全行业资讯

还不是OFweek会员,马上注册
打开app,查看更多精彩资讯 >
  • 长按识别二维码
  • 进入OFweek阅读全文
长按图片进行保存