光神经网络,正在照亮智能计算的未来

品途商业评论 中字

芯片的结构由不同的层组成,分别在光纳米电路中的不同通道上传输光。

(分子光学神经元电路)

研究人员使用了两种不同的机器学习算法,分别是小规模的监督学习和无监督学习,以光脉冲的形式向后“提供”信息,以此测试全光学神经突触系统能否根据给定的光识别出具体的模式。

目前,研究人员已经利用该技术成功实现了光学模式识别,并展现了光子神经网络的可扩展性。

在此,我们可以简单总结一下这种新光学神经网络硬件的特殊之处:

首先,它解决了前辈们没能解决的问题——光学计算在识别准确率、可编程性、微型化上的缺陷——让光学计算在计算机硬件领域的潜力带来了新的前景。

(正在开发的光学微芯片大约只有一分钱大小)

另外,该硬件的计算方式和大脑中神经元突触的信息传递高度相似,不仅使得信息(数据)得以在人工神经网络中传输,还能够进行有效的处理和存储。以更类似于大脑的方式处理信息,这有助于开发更高性能的算法,进而帮助智能机器更好地完成现实世界的任务。

而且,该系统只在光下工作,使它充分发挥了光学计算的优势,处理数据的速度要快很多倍,更适合用于一些大规模数据的神经网络,比如医学诊断模型等。并且更加节省能耗。

这也就不难理解,为什么有人认为,如果高能效的可扩展光子神经芯片最终出现,这一团队的研究绝对算是开山之作了吧。

当然,想要让可扩展光子神经网络系统在现实中应用,还需要做许多后续工作。

最首要的,就是增加人工神经元和突触的数量,以及神经网络的深度,以便进一步接近和适应真实的大规模计算应用场景。

另外,芯片的制造也存在一定的限制。对此,埃克塞特大学的戴维·赖特教授表示,将使用硅技术来生产光学纳米芯片。

另一个值得关注的问题是,系统中极为关键的相变材料,其结晶速度会吸收并减慢光速,从而限制神经元被激发的最大速率,对于光的交叉耦合带来一定的复杂影响。因此,每一次注入该系统的总光学功率都需要进行仔细校准,以保证材料对输入信号的响应完全符合预期。

不管怎么说,尽管光学计算硬件仍然在实现层面面临着许多挑战和困难,规模化应用也没有明确的时间表。但或多或少让我们看到了更多有趣可行的计算方式,未来世界的算力资源依旧是充沛和值得期待的。

随着智能基建的一步步添砖加瓦,光学计算必将变得越来越重要。

文 | 脑极体

声明: 本文系OFweek根据授权转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们。
侵权投诉

下载OFweek,一手掌握高科技全行业资讯

还不是OFweek会员,马上注册
打开app,查看更多精彩资讯 >
  • 长按识别二维码
  • 进入OFweek阅读全文
长按图片进行保存