智能对话爆发,但要做引擎的百度大脑已经提前赢下这场AI竞赛

曾响铃
关注

2、技术上,已实现快速冷启动+高精度长尾优化

在技术层面,百度智能对话引擎及其核心产品UNIT3.0有一个长达100多页的PPT详尽介绍其各类技术优势,其技术储备的丰富与深度可见一斑(具体见相关报道)。

但总体看来,这里认为,该引擎在技术上有两个分阶段的优势:部署后的快速冷启动,运行过程中的高精度长尾优化。

说白了,既然是引擎,“加速度”能力是十分重要的。

按百度方面的说法,其UNIT3.0能通过平均77个模板就能实现对话技能的快速冷启动,对比行业需要高达800+模板;以地图导航为例,百度大脑智能对话引擎通过10-100个模板、10-100个样本就能快速启动,实现90%的的准确率。

这意味着,开发者和企业几乎拿来就能满足基本的需求,部署十分简单,对环境要求不高。

而在冷启动完成之后,智能对话的能力PK就转移到第二个阶段:精度的上限能到多少。

90%只是开始,100%只能无限接近。百度智能对话引擎目前已经能实现95%的精度(即机器与人对话,95%是成功理解和互动的),注意,这不是普通的指令式语音互动,这个数字已经在智能对话领域已经远远高于多数玩家。

值得一提的是,精度从冷启动到向上优化的过程,本质上是长尾的过程,在频繁、大量的对话可能性之外,不断覆盖那些出现频率不高的内容。而这一过程仍然需要人力完成数据的归纳、标注等动作(等于教会机器新鲜词汇或词组的现实意义)。

百度大脑智能对话引擎不仅在做AI的事,还帮助这种“人力”的节省。其DataKit等产品能够大幅提升样本生产和标注效率,官方称能把效率提升8倍(从16人/天到2人/天),这一定程度上解决了需要啃食数据的AI发展所自带的人力瓶颈问题。

3、应用上,拥有典型场景并继承百度开放特质

除了具体的数字,在实现场景上,百度大脑也在百度引以为傲的开放特质下,完成了多个典型场景的敷设。

目前,百度智能对话引擎已经在智能客服(中国联动、南方电网、东方航空、浦发银行、广州银行等)、消费电子(家教机、伴学机器人等)、车联网(Apollo、小度车载OS平台等,涵盖上汽通过、福特等车企)等核心应用领域进行深度应用。

这些典型场景一方面是百度大脑智能对话引擎的实力证明,另一方面也在不断外延的场景实践中,进一步提升“引擎”的多面适用性,积攒推动更多场景前进的“马力”。

在BAT甚至整个互联网的竞争格局中,百度“最开放”的优势仍将保持下去,更多对智能对话有需求的开发者、企业方将能获得平等、便捷的开放生态。

百度大脑智能对话生态这趟车,还会有更多“乘客”,这种预期下,把平台定位为“引擎”也就顺理成章。

强化“引擎”的生态推动力,百度大脑未来的三大看点

成为“引擎”不意味着结束——现实生活中的引擎往往都在追求更强的推力、更低的油耗,智能对话“引擎”也不例外。

要让“引擎”获得更强的生态推动力(也意味着百度获得更强的竞争力),百度大脑还需要在这三个层面突破升级的关卡:

1、普惠化:让高可用性智能对话实现低门槛获取

AI终将成为全社会的基础设施,智能对话的普惠化将是这个庞大基础设施体系的一部分。

而技术的普惠化,往往又与技术的深度背道而驰。

霍金能够用最后一片能动的肌肉实现打字、演讲,靠的是IBM独家提供的设备的强大技术实力。但这种技术的造价高昂,只能用于少数人身上。

智能对话比其他AI技术更复杂,决定了它的实现难度更大,所需投入的资源也更多,普惠化面临巨大的门槛压力。而高可用性的智能对话,最终目标一定是实现“图灵测试”突破,人人可享用真正智能化的对话机器人,听起来并不“便宜”。

于是,如何降低门槛就成了关键词。

百度智能对话引擎的庞大预置技能,以及快速冷启动、智能化人工标注,都是降低智能对话应用门槛的动作。在百度智能客服人工智能3.0的规划中,“限定轮次”实现“图灵测试”被写入,这说明,在“引擎”阶段就尽量实现技术的简单易行,将是普惠化的可行方式。

2、定制化:多级生态模式满足不同深度的智能对话需求

既然是生态,智能对话绕不过的问题一定有定制化与标准化的协同问题。

平台提供的产品往往以标准化内容为主,如此在商业上更易于实现规模化;而客户的需求往往带有大量的个性化内容,这样才能更好地匹配只属于自己的用户/消费者实际。

又要标准化、又要定制化,是“平台”们面临的共同难题,也是钳制生态规模的重要因素。

从这个角度看,百度大脑智能生态引擎在具体技术内容上,提供的一些工具或模块,就在尝试解决这类问题。

例如,UNIT3.0内嵌一个称为US Kit的开源中控模块,能无缝对接UNIT平台能力,在此基础上快速生产定制化对话中控,且开源架构能够不断延展、支持添加各种新能力。

用大白话说,开发者能够通过配置各种标准化技能(接入多个对话场景),快速搭建和定制符合自己业务场景的对话中控,这种对“标准化”的整合与统一,反过来又现实了属于开发者的定制化对话服务。

3、共赢化:用对话服务模式的变革推动全产业升级

为了强调“对话技术进入工业级落地的各项基础条件已具备”,百度方面用了这样一些数据:38%的企业已应用基于智能对话的系统;44%的企业计划在2年内使用智能对话;83.3%企业认为智能对话能有效降低运营成本;78.6%的企业认可智能对话能改善客户体验……

事实上,换个角度看这些数据:对话服务方式的改变,使得智能对话引擎某种程度上成为产业升级浪潮的助力,而不再仅仅是平台、企业、开发者之间的AI商业互动。

为产业中某企业服务的智能对话引擎,在事实上加速着企业(并通过企业改变产业本身)与互联网信息时代融合的速度,在这个过程中,由于客户体验的改变、信息沟通反馈的便捷,企业以及产业的闷头干活的发展方式也将被改变。

而这,正是产业升级的内容。

智能对应引擎所形成的行业生态从客服等职能切入,但沟通方式改变对许多产业的影响却是整体的。百度大脑的智能对话引擎,不仅仅在形成百度自己的AI垂直生态,也在用对话服务模式的变革推动全产业升级。

*此内容为【科技向令说】原创,未经授权,任何人不得以任何方式使用,包括转载、摘编、复制或建立镜像。

声明: 本文由入驻OFweek维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。
侵权投诉

下载OFweek,一手掌握高科技全行业资讯

还不是OFweek会员,马上注册
打开app,查看更多精彩资讯 >
  • 长按识别二维码
  • 进入OFweek阅读全文
长按图片进行保存