产业化、生态化,AI的玩法还要多几分“意外”
从AI产业化、生态化的商业玩法上看,AI的趋势也有些令人“意外”,过去某些玩法出现“反转”。
1、人人AI不再是憧憬了
IDC预计,传统行业中的大中型企业到2020年行业前15%的企业都将采用机器学习。这意味着,AI不再是高高在上的时髦技术,几年内就就将“飞入寻常百姓家”,而越是传统行业就越发积极,价值体现也更为明显。
空调制造巨头美的,用图像识别技术通过监测空调外观来保证空调出厂质量;专业服务制造业“检测”的领邦智能,基于百度PaddlePaddle框架训练深度学习模型,能够高效准确地识别出问题零件及其种类,精度与人工检测持平,成本节约15%以上;代工巨头富士康更不用说,每年将收入的2%-5%用于AI的研究。目前,在模具生产中,富士康建立了基于深度学习的模型算法,实现刀具更换提前预警、自动补偿,人力成本投入进一步减少。
目前中国正面临着人工智能技术产业化以及传统产业智能化的最佳机遇,能否抓住新机遇帮助企业建立核心竞争优势取决于企业如何行动。白皮书指出,百度大脑3.0技术能力已进入“多模态深度语义理解”阶段,已经开放能力超140项,每日调用次数超过4000亿次。除了开放AI技术能力之外,在生态方面,百度大脑推出了燎原计划,对合作伙伴提供商业落地所需的市场与运营资源,全力支持生态共赢 。在智能硬件和设备领域,百度大脑与芯片、嵌入式开发板、传感器模组,以及闸机、门禁、机器人等厂商广泛建立合作,帮助客户获得软硬件适配更加整合的方案。百度大脑还创新性地推出了AI市场,为合作伙伴提供品牌营销、产品评测、产品推荐等全套服务,旨在为合作伙伴带来更多优质的订单。同时,百度大脑的行业创新合伙人计划在每个细分领域最多选择3家企业,与百度大脑联合设计、开发,共同打造行业解决方案,推动产品落地。
2、AI不再“深居云端”,边缘也需要“AI一下”
由于百度云等云计算玩家的引领,过去云计算应用都偏向于云端部署。不过,随着物联网的深度发展,靠近数据源的端侧设备的AI部署将盛行起来。
用大白话说,过去是数据统一汇总到云端统一运算,现在,那些终端设备(例如终端摄像头、温度传感器等)将进行必要的计算(物品识别、人脸识别等),云端只负责统筹式的数据运算。
例如,百度云的“天工”就是针对智能物联网的云平台产品,其主要特点之一是可以实现“智能边缘”——端计算、云管理、端云融合,在工业、物流、车联网、家居、城市等物联网领域都能够被应用。腾讯云、阿里云等也有类似的产品,IDC预计至2022年,25%的物联网端设备都将运行AI算法模型。
3、软硬件的协作,这回不只有硬件说了算
过去,AI的计算是建立在已有的硬件基础上,例如intel已经成型CPU,或者Nvidia本来用于画图或游戏的GPU。有什么硬件就用什么硬件,硬件决定软件计算能力。
不过,这个状况正在被改变,软硬件的关系以后将逐步走向协同,软件定义计算已成为芯片厂商的重要战略之一,软件及应用驱动AI专用芯片的阶段也将到来。
7月,百度发布“昆仑”AI芯片,每秒运算260万亿次,这远远超过Nvidia的GPU进行AI运算的效能。显然,“昆仑”的基础架构建立在机器学习、AI应用趋势的基础之上。此外,华为在手机芯片中植入的NPU模块,以及刚刚发布不久的Ascend 310独立AI芯片,都遵循同样的玩法。
4、所谓生态参与者越来越多,想做“平台”挑战越来越明显
开放一直是AI大佬级企业做生态的标配,BAT皆是如此,只是开放的程度和姿态不一样,有些啥都开放强调共赢,有些强调控制,有些只管投资收益。
做AI平台生态过去就是笼络一大批需要AI技术加持的企业,建立合作关系、输出AI能力,谁能获得的合作伙伴越多、类型越丰富,谁的生态就最“扎眼”。
然而,正如上文所说,AI技术正在向端侧智能渗透,且软硬件需要高度适配,于是平台在整合生态的过程中,不仅仅需求合作伙伴的数量和种类,在产业链方面的要求更为严苛。以物联网领域为例,平台的AI生态不仅仅只有需求方(例如制造企业),还需要与传感器、摄像头、模组这些上游企业就AI的应用达成一致,一些时候芯片也需要改造或重建。
产业链上的细分产业的整合愈加重要,未来的AI生态平台将是网状结构的,百度等AI大佬要稳坐钓鱼台,挑战会更大,而一旦这样的生态建立起来,护城河也将更宽更深。