ArCompany公司的Karen Bennet是一名致力于平台、开源和封闭源系统以及人工智能技术的经验丰富的工程主管。作为雅虎公司的前工程主管以及Red Hat公司的创始人之一,Karen致力于推动技术革命,他早期在IBM公司专家系统参与人工智能技术的开发,而如今正在见证机器的快速实验学习和深度学习。他撰写的这篇文章将对人工智能的现状进行探讨。
随着人工智能的应用越来越广泛,人们发现很难驾驭,对于采用人工智能的承诺在很大程度上还没有实现。虽然人工智能相关技术仍在不断涌现,但并未成为所承诺的那样成为一种普遍力量。以下查看一下令人信服的统计数据,以证实人工智能技术的发展:
自2000年以来,人工智能创业公司数量增加了14倍。
自2000年以来,风险投资公司对人工智能初创企业的投资增长了6倍。
自2013年以来,需要人工智能技能的工作比例增长了4.5倍。
截至2017年,Statista公司发布了以下调查结果:截至去年,全球只有5%的企业将人工智能广泛纳入其流程和产品中,32%的企业尚未采用,22%的企业没有计划采用。
截至2017年,全球商业组织的人工智能(AI)采用水平
Filip Pieniewski最近在行业媒体Venturebeat发表的文章中表示:“人工智能的冬天即将来临”。
如今,这种情况正在发生变化。从表面上看,神经信息处理系统大会(NIPS)会议仍然座无虚席,企业的新闻稿中仍然发布很多关于人工智能的文章,特斯拉公司创始人伊隆?马斯克仍然致力于开发和研究具有前途的自动驾驶汽车,谷歌公司不断推动Andrew Ng的线路,认为人工智能产业规模将比电力行业更大。但这种叙述开始让人质疑。
人们对自动驾驶汽车很感兴趣。但在今年春天,一辆自主驾驶车辆撞死一名行人,这引发了人们的质疑,并对自动化系统决策背后的道德规范表示怀疑。自动驾驶车辆问题并不是拯救汽车乘客生命一种简单的二元选择,可能将演变成对于良心、情感和感知的争论,这使机器做出合理决定的路径变得复杂。
Karen的文章指出:全自动驾驶汽车的梦想可能比人们意识到的还要遥远。人工智能专家越来越担心,在自动驾驶系统能够可靠地避免事故之前,可能需要数年甚至数十年的探索。
Karen解释说,以历史作为预测因素,云计算行业和网络行业在开始以显著的方式影响人们工作和生活之前花费了大约5年时间,几乎需要10年的时间才影响市场的重大转变。人们正在设想人工智能技术的类似时间表。
为了让每个人都能够采用,需要一个可扩展的产品和一个可供所有人使用的产品,而不仅仅是数据科学家。该产品需要考虑捕获数据,准备数据,训练模型,以及预测的数据生命周期。随着数据存储在云中,数据管道可以不断提取并准备它们来训练将进行预测的模型。模型需要不断改进新的训练数据,这反过来将使模型保持相关性和透明性。这就是目标和承诺。
在没有重大用例的情况下构建人工智能概念证明
Karen在人工智能初创企业中工作,其所见证的以及与同行讨论时都是广泛的人工智能实验,涉及多个业务问题,这些问题往往停留在实验室中。
最近他发布的一篇文章证实了如今人工智能试点项目的普遍性。文章指出,“人工智能技术的供应商经常受到激励,使他们的技术听起来比实际能力更强——但暗示着比实际拥有更多的真实世界的吸引力......企业中的大多数人工智能应用只不过是一种试点。”供应商推出销售营销解决方案、医疗保健解决方案和人工智能的财务解决方案只是为了驱动人工智能技术得到人们越来越多的关注。在任何给定的行业中,人们发现在销售人工智能软件和技术的数百家供应商公司中,只有大约三分之一的公司真正拥有知识和技术开展人工智能的探索和研究。
风险投资商意识到他们可能在一段时间内看不到投资回报。然而,很少有模型进行普遍的实验只是人工智能尚未准备好迎接广泛应用的原因之一。
算法可以为此负责吗?
人们也许听说过人工智能“黑盒”, 这是一种无法确定决策的方法。这种做法将面向银行和大型机构,这些机构具有强制执行问责制的合规标准和政策。在系统作为黑盒运行,只要这些算法的创建已经通过审核,并且已经由关键利益相关者满足某些标准,就可能存在对算法的固有信任。鉴于压倒性的生产算法以及由此产生的意外和有害结果的压倒性证据,这一概念很快就受到了质疑。由于企业保密措施不当,缺乏足够的教育和理解,很难批判性地对投入、结果以及为什么会出现这些结果进行检查,企业的许多简单系统都像超出了任何有意义审查范围的黑盒一样运行。
如今的人工智能行业正处于企业准备就绪的早期阶段。人工智能非常有用,可以用于发现并帮助解析大量数据,但是仍然需要人工干预作为评估和处理数据及其结果的指南。
Karen解释说,如今的机器学习技术可以标记数据以识别洞察力。但是,作为此过程的一部分,如果某些数据被错误地标记,或者如果没有足够的数据表示,或者存在有问题的数据表示有偏差,则可能会发生错误的决策结果。
他还指出目前的流程需要不断完善:目前,人工智能完全是一种关于决策支持以提供对业务可以得出结论的见解。在人工智能发展的下一阶段,它可以实现数据中的自动化操作,还有其他需要解决的问题,如偏见、可解释性、隐私、多样性、道德规范和持续模型学习。
Karen以一个人工智能模型为例进行了说明,当图像标题暴露了通过训练学到的知识时,可以看到错误,这些图像用他们所包含的对象标记。这表明,人工智能产品需要具有常识世界模型的对象和人才才能真正理解。仅暴露于有限数量的标记对象且训练集中的有限多样性将限制这个常识世界模型的有效性。企业需要研究确定模型如何处理其输入,并以人类可理解的术语得出结论。亚马逊公司发布了面部识别技术Rekognition,这是目前正在生产并获得许可使用的技术的一个例子,同时其效果存在明显差距。
算法正义联盟的创始人Joy Buolamwini呼吁暂停这项技术,声称它无效,并且需要更多的监督,呼吁在公开发布这些系统之前将更多的政府标准纳入这些类型的系统。