AI是如何一步步成为“药神”的?

智能相对论
关注

第二步:AI制药,改变药物研发模式

《我不是药神》电影中,矛盾的聚焦点就在于天价的“格列宁”,新药贵,贵在研发,研发的“试错”环节,AI也许能够帮上大忙。

从目前智慧医疗的发展情况来看,擅长模式识别的人工智能可以从海量已有的和新的基因、代谢及临床信息中筛查筛选,以破解各种疾病背后的复杂网络。反过来,这也有助于发现适用于特定病人群体的药物,同时引导药企规避可能会失败的药物。

此外,借助人工智能的生物意义,可以帮助药企根据病人情况,并参与对他们最可能见效的创新疗法的临床试验,这也许能够成为提升新药获批的可能性,比如获得美国FDA的批准。

实际上,医药研发的核心在于知识图谱,就是将实验信息、数据、临床实验结果和数据的结合起来,将零散的数据整合在一起,从而为决策提供有价值的数据支持。

从目前来看,人工智能主要作用于药物研发主要有七个场景:靶点药物研发、候选药物挖掘、化合物筛选、预测ADMET性质、药物晶型预测、辅助病理生物学研究,以及发掘药物新适应症。

AI是如何一步步成为“药神”的?

人工智能作用于的制药场景

根据Tech Emergence的研究报告,AI可以将新药研发的成功率从12%提升至14%,这2%意味着能够为生物制药行业省下数十亿美元的研发成本和大量的试错时间。

但是,不容否认的是:AI药物研发一定是一场持久战。目前世界上并没有AI药物研发的成功案例,人工智能研发的药物也并没有被批准上市。

目前发展较好的国外企业应用AI研发的新药已进入二期临床,但是二期到三期的失败率高达70-80%。AI技术应用前景广阔,目前依然任重道远。辉瑞、罗氏、GSK等巨头纷纷“下注”AI公司,目前发展还需要时间检验。

但这并不意味着AI制药并无可能。如果技术能够有效缩短药物研发的效率,提高研发上市成功率,那么药物研发的成本就会大幅度降低,这样可以大幅度减轻国家医保负担,“平价药”也将成为可能。

第三步:药物数据成为AI制药关键

其实,我们也可以看到,AI在智慧医疗领域的每一步,其中都撇不开一个重要因素:药物数据。

比如,在新药研发领域,AI可以帮助科学家从巨大体量的化合物数据库中完成文献搜索,许多公司也在研究如何利用机器模拟化合物跟特定靶标的结合效果,从而大大加快新药筛选的过程。全球每年都有数千亿美元用于新药研发,AI技术的运用能够在一定程度上提高研发效率。

AI通过机器学习,不但可以加速时间,还可以提高到达后期试验阶段药物的成功概率。如果AI可以减少药物试验的风险,就可以为大型制药公司节约大量成本,使其能够腾出资源集中于寻找更有潜力的机会。

类似的人工智能应用在流行病统计、临床试验数据分析和精准医疗基因检测方面也大有可为。在人工智能精准医疗项目方面,IBM也继“Waston肿瘤医生”推出了“Waston for Genomics”

除了药物数据,医疗数据也成为医生诊断及后续药物研发的重要依据。随着健康智能硬件的兴起,医疗数据的边界不断地被拓展。

2016年4月,一款健康智能硬件记录的数据拯救了一个新泽西州男人的生命。这个男人在工作当中突发心脏病,医生通过其智能手机提取其日常的心率数据,这些数据帮助了医生排除了不必要的诊断,并配合医生迅速找到合适的医疗方法,进而拯救了一个生命。

医疗数据可不仅仅是医学期刊和医生输入电脑的医疗记录,我们的身体无时无刻不在产生海量的潜在医疗数据。但是目前来说,绝大部分的数据都处于“丢失”的状态——我们每天走了多少步、今天的心率怎么样、皮肤的温度是高还是低、今天都吃什么了等等这些数据,都只保存在本地、孤零零的几个设备和App里。

对AI医疗来说,数据的重要性不言而喻。不论是应用于药物研发还是诊断治疗方面,都有着相当大的前景,但是AI在小样本集上做的诊断或推定,被认为是不可持久的模式,因为一旦再扩大一点范围,换一个病种、换一个地方,结果可能就出现偏差,正确率下降。

总的来说,AI医疗发展至今已经有了长足的进步,虽然许多AI医疗产品暂未落地,但是不是病人的“药神”,我们走着瞧。

智能相对论:深挖人工智能这口井,评出咸淡,讲出黑白,道出深浅。重点关注领域:AI+医疗、机器人、智能驾驶、AI+硬件、物联网、AI+金融、AI+安全、AR/VR、开发者以及背后的芯片、算法、人机交互等。

声明: 本文由入驻OFweek维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。
侵权投诉

下载OFweek,一手掌握高科技全行业资讯

还不是OFweek会员,马上注册
打开app,查看更多精彩资讯 >
  • 长按识别二维码
  • 进入OFweek阅读全文
长按图片进行保存