“兽工智能”之“猪脸识别”

亿欧网 中字

面临更加成熟技术的竞争

猪脸识别需要依靠数据采集,数据的学习以及最后的检索等程序来确定猪的身份,每一个环节都可能会因为技术及概率的缺陷造成误差。而经过长时间发展的智能耳标则更成熟,而且在确定猪的身份上更加精确。

耳标相当于猪的身份证,具有唯一性,既可以满足动物日常信息管理,也可以实现动物产品的全程追溯。

虽然陈瑶生教授表示,戴耳标、植入芯片等方法识别猪只,会给动物带来了不必要的身体伤害,但是让猪再快乐地生活,最后都免不了痛苦的去死。而随着智能耳标也在向着人工智能的方向发展,显然这两门技术的决斗还尚未开始。

除了“猪脸识别“,还有“羊脸”、“牛脸”、“狗脸”、“马脸”……

上面提到“牛脸”、“羊脸”识别相对于“猪脸识别”更简单,而其发展无疑会给“猪脸识别”新的启示。剑桥大学的教授就开发了一种表情识别系统,通过面部识别来判断绵羊的疼痛程度,如果将这项技术应用到牧场,用摄像头来监控羊群,就可以及时发现绵羊的生病情况。

狗作为人类最忠实的好朋友,“兽工智能”在其身上取得的成果并不少,智能相对论曾对此分析过。而今年4月1日百度推出的“狗脸识别”,不仅可以便于宠物的找回,而且能够扫描狗脸喂食、自由进出门禁、还能收取快递与购买商品并支付等功能。虽然初衷是好的,但后面的几点画风似乎很清奇,毕竟自由进出门禁可能会发生,坏人拎着我的狗偷走了我的钱怎么办?

而在未来,除了前面提到的,生物活体识别技术通过深度学习对动物面部特征、整体体态和行为特征进行识别,判断其品种和其健康情况比如哪些动物生病了,生了什么病,那些动物没有吃饱,甚至哪些动物到了发情期需要配种等等。

更重要的是,可以为食品安全、养殖户信贷服务甚至更多的金融服务等商业应用提供决策依据。

然而说到这里,开头提出了的猪脸难以识别的问题似乎还没有解决。而在陈瑶生教授的猪脸识别技术的实验场中,母猪识别率为98%(估计是母猪体型大不好移动),肉猪识别率则为85%。这个识别率并不算高,特对是对大规模的养殖场而言。

所以,俺老猪面部识别率还可以再提高吗?

当前使用的人工智能技术来实现视觉识别的原理基本上是一致的,即利用计算机神经网络的深度学习,学到每一头猪的特征,然后利用深度学习的模型,针对测试数据集,得到每一头猪的概率,最后来判别哪头猪是哪头猪。

最常采用的做法是把人脸的模型直接fine tune(微调)到动物脸,但是fine tune在深度学习里面更像是一个处理手段。

而Transfer learning(迁移学习)可以看成是一套完整的体系,是一种处理流程。目的是不抛弃从之前数据里得到的有用信息,同时应对新进来的大量数据的缺少标签或者由于数据更新而导致的标签变异情况。

京东举办的“猪脸识别”冠军团队就是采用的这种办法,该团队表示刚拿到数据集时,很难分辨哪头猪是哪头。而当他们使用模型再运行数据,发现猪脸识别的最后运行效果达到比模型跑人脸的效果还好。

但是值得一提的是,由于AI工作与其他科学研究相比,学术研究数据,尤其是大量级、多维度、优质、真实的数据依赖程度高。据官方报道,该数据素材只拍摄了两天,因此京东这次拍摄的数据并不具备时间上的动态变化,具有一定的局限性。

而这里采用迁移学习识别马,则使用了一种全新的思路。由于人脸的特征和动物脸部的特征本身的差异很大,但是当动物的脸部做了变形之后,就会和人脸比较相似了,所以,我们需要先找到一个人脸和马脸相似性较大的一个映射空间,然后使得人脸的训练数据可以被有效的利用起来训练马脸。

具体办法是,先找到人脸和马脸角度或者表情相似的图片,然后以相似的部位作为关键点,接着训练获得一个映射区间,得到了这一映射区间之后,把原来的马脸图片做变换,最后再采用人脸模型去fine tune动物脸检测的模型。

显然,“猪脸识别”也可以借鉴这种办法,相信在不久的未来,“猪脸识别”技术可以更加准确。

由于大多数人都脸盲,佩奇就是我们见过最单纯的猪了。而其他的,更精细的识别与诊断,只能通过“兽工智能”来实现了。(雷宇)

声明: 本文系OFweek根据授权转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们。
侵权投诉

下载OFweek,一手掌握高科技全行业资讯

还不是OFweek会员,马上注册
打开app,查看更多精彩资讯 >
  • 长按识别二维码
  • 进入OFweek阅读全文
长按图片进行保存